

Greedy II: Interval scheduling.

The problem: given n intervals $[s(i), f(i)]$, select the maximum number that is disjoint.

Example:

Last time we discussed greedy ideas, and were two last ones left

- A. Select the one with earliest finish time
- ~~B.~~ Select the one with fewest conflict

not working

Algorithm A: select interval with earliest finish time

Algorithm:

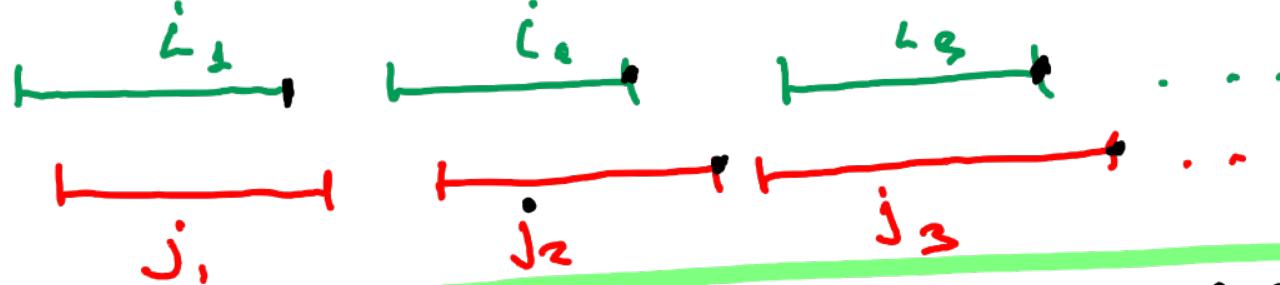
While any intervals left

 Select the one with earliest finish time, and accept it

 delete all overlapping intervals

Endwhile

Running time:

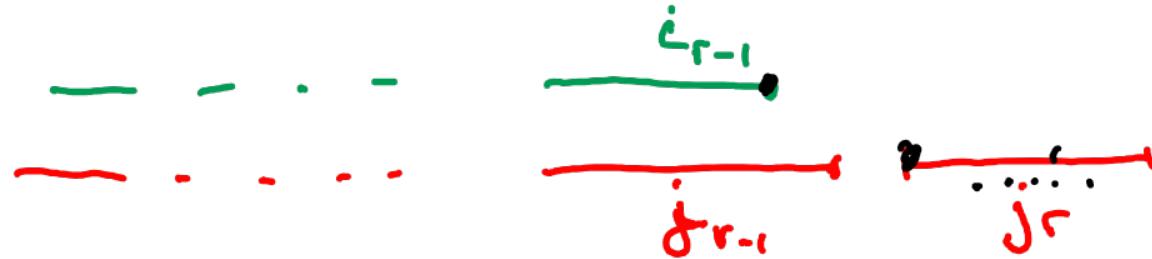

also possible
 $O(n \log n)$

n intervals on our list
 $O(n \log n)$ sort by finish time
at most n iterations
easy to implement each iteration in $O(1)$ time
 \Rightarrow total time $O(n^2)$

Proving Algorithm A correct: proof technique: greedy stays ahead

Will prove by induction that at each step greedy is “better” than any other solution. Need a definition “better”

greedy solution
optimal solution


Claim: all i_r $f(i_r) \leq f(j_r)$ for r while
Opt has an interval

immediately implies that greedy
has at least as many intervals as Opt
 \Rightarrow greedy optimal

Proof of Claim by induction on r

base case $r=1$ by definition of greedy $f(i_1) \leq g(j_1)$

induction step. by induction hypothesis $f(i_{r-1}) \leq g(j_{r-1})$

$$s(j_r) \geq f(i_{r-1})$$

as they are disjoint

combining the two

$$s(j_r) \geq f(i_{r-1}) \Rightarrow$$

j_r is among intervals greedy considered when selecting its next interval

f greedy rule: select one with earliest finish time

$$f(i_r) \leq f(j_r)$$

✓